Course Specifications				
Programme(s) on which the course is given	: P., P.&comp.			
Major or Minor element of programmes	: minor –			
minor.				
Department offering the programme	: P.,			
P.&Math.,				
Department offering the course	Physics			
Academic year / Level	Senior (3)			
Date of specification approval	2012			
A- Basic Information				
Title: High energy physics	Code: 356			
Credit Hours: 3 hr Lecture: 3h				
Intorial: 00 Practicals:00 I D D D D	otal: 3hr			
B- Professional Information				
1 – Overall Aims of Course				
* To provide detailed information abo	but the smallest			
possible building blocks in nature incl	luding cosmic –rays			
* To provide highlights about the characteristics of the				
forces that holding particles in nature and about the				
possibility of combining these forces together				
*To introduce the important roles of virtual particles and				
the need for ultra high energy accelerators				
*To introduce methods for particle classifications,				
interactions and detection				
2 – Intended Learning Outcomes of Course	(ILOs)			
a Knowledge and Understanding:				
After completing this course the stude	nt should be able to			
a1- identify of hundreds of particles in the subnuclear				
zoo and methods of classification				

a2- explain mathematical methods of energy loss and penetration of ionizing radiation through matter a3- illustrate the existence of particle-antiparticle systems, the four types of forces, conservation laws to serve for interaction, classification, Gell Mann and his collaborators theory, properties of quarks and color charge of quarks

- **b** Intellectual Skills
- After completing this course the student should be able to b1- solving problems covering the materials of the course.

b2- Student should handle in an essay to develop his/her writing and understanding skills

c Professional and Practical Skills

After completing this course the student should be able to c1- apply the gained information about the

subnuclear zoo of particles.

c2-apply the gained experience dealing with conservation laws that serving in particle interaction classifications.

c3-interpret his understanding about he different mathematical treatments covered in some parts of the course.

d General and Transferable Skills

d1-gainning experience from the oral communication through sheets of problem-solving.

d2-ability of giving 10 minutes presentation on a student slf-choosing topic either from the cours material or related toit.

3- Contents

Торіс	Ν	Lectu	Tutor
	0.	re	ial/Pr
	of		actica
	h		1

	0		
	ur		
	S		
Theory of energy loss of	4	2	00
charged particles in			
composite media			
Dual wave-particle nature	3	2	00
and quatum mechanical			
treatment of creation and			
destruction			
Forces of interactions and	3	2	0
properties of virtual			
particles			
Classification of particles	8	5	00
according to mass and			
interactions-resonance			
particles-Feynman			
diagrams.			
Conservation laws and	3	2	00
iteraction classification			
Theory of quantum	4	3	00
chrodynamic and properties			
and binding of quarks.			
Energy in nuclear reaction	8	5	00
(threeshould , particle			
production, particledecay,			
track particle detection.			

4– Teaching and Learning Methods

4.1-lectures

4.2- disscutions

5- Student Assessment Methods

5.1 midterm written exam to assess understanding about the covered first part of the course

5.2-semester activity. to develop communication skills..

5.3 final written exam to as	sess the overall gain from
the course materials	
5.4 homework sheets to asse	ss solving problems skills
and time constrain	
5- Student Assessment Methods	
5.1 sheat exams to assess the	e theoretical
knowledge	
5.2 disscutions to assess stu	dent scientific
thinking	
5.3 reaserch projects to ass	ess the overall
outcome	
Assessment Schedule	
Assessment 1 sheet exam	Week 8&16 (mid
&final term).	
Assessment 2 oral exams	Week every
week	
Assessment 3 written exam	Week 15
Weighting of Assessments	
Mid-Term Examination 20	⁰ / ₀
Final-term Examination	60 %
Oral Examination.	10 %
Semester Work 10	%
Total 10	00 %

6- List of References

6.1- Course Notes

experimental physics ,department of physics,2005.

6.2- Essential Books (Text Books)

K.S.Krane,Introduction nuclear physics (John Wiely &sons,New Yprk,1998).

-P.E.Hodgson, E.Gadioli and E.Go, Introductory nuclear physics (Oxford Science Puplications, 200)

6.3- Recommended Books

6.4- Periodicals, Web Sites, ... etc

www.sciencedirect.com. Searching for nuclear physics sites Searching for Partile physics sites

7- Facilities Required for Teaching and Learning Overhead projector

Course Coordinator: Prof.Dr.Abdel Azim Hussein Head of Department: Prof.Dr. Sana Maize Date: / /